Lattice
Abstract:Accurately modeling and forecasting complex systems governed by partial differential equations (PDEs) is crucial in various scientific and engineering domains. However, traditional numerical methods struggle in real-world scenarios due to incomplete or unknown physical laws. Meanwhile, machine learning approaches often fail to generalize effectively when faced with scarce observational data and the challenge of capturing local and global features. To this end, we propose the Physics-encoded Spectral Attention Network (PeSANet), which integrates local and global information to forecast complex systems with limited data and incomplete physical priors. The model consists of two key components: a physics-encoded block that uses hard constraints to approximate local differential operators from limited data, and a spectral-enhanced block that captures long-range global dependencies in the frequency domain. Specifically, we introduce a novel spectral attention mechanism to model inter-spectrum relationships and learn long-range spatial features. Experimental results demonstrate that PeSANet outperforms existing methods across all metrics, particularly in long-term forecasting accuracy, providing a promising solution for simulating complex systems with limited data and incomplete physics.
Abstract:3D part assembly aims to understand part relationships and predict their 6-DoF poses to construct realistic 3D shapes, addressing the growing demand for autonomous assembly, which is crucial for robots. Existing methods mainly estimate the transformation of each part by training neural networks under supervision, which requires a substantial quantity of manually labeled data. However, the high cost of data collection and the immense variability of real-world shapes and parts make traditional methods impractical for large-scale applications. In this paper, we propose first a zero-shot part assembly method that utilizes pre-trained point cloud diffusion models as discriminators in the assembly process, guiding the manipulation of parts to form realistic shapes. Specifically, we theoretically demonstrate that utilizing a diffusion model for zero-shot part assembly can be transformed into an Iterative Closest Point (ICP) process. Then, we propose a novel pushing-away strategy to address the overlap parts, thereby further enhancing the robustness of the method. To verify our work, we conduct extensive experiments and quantitative comparisons to several strong baseline methods, demonstrating the effectiveness of the proposed approach, which even surpasses the supervised learning method. The code has been released on https://github.com/Ruiyuan-Zhang/Zero-Shot-Assembly.
Abstract:With the development of distributed systems, microservices and cloud native technologies have become central to modern enterprise software development. Despite bringing significant advantages, these technologies also increase system complexity and operational challenges. Traditional root cause analysis (RCA) struggles to achieve automated fault response, heavily relying on manual intervention. In recent years, large language models (LLMs) have made breakthroughs in contextual inference and domain knowledge integration, providing new solutions for Artificial Intelligence for Operations (AIOps). However, Existing LLM-based approaches face three key challenges: text input constraints, dynamic service dependency hallucinations, and context window limitations. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained RCA. It unifies multi-modal observational data into time-aligned representations to extract consistent features and employs specialized root cause localization and fault classification tools for perceiving the contextual environment. This approach overcomes the limitations of LLM in handling real-time changing service dependencies and raw observational data and guides LLM to generate repair strategies aligned with system contexts by structuring key information into a prompt. Experimental results show that TAMO performs well in root cause analysis when dealing with public datasets characterized by heterogeneity and common fault types, demonstrating its effectiveness.
Abstract:Discovering molecules with desirable molecular properties, including ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles, is of great importance in drug discovery. Existing approaches typically employ deep learning models, such as Graph Neural Networks (GNNs) and Transformers, to predict these molecular properties by learning from diverse chemical information. However, these models often fail to efficiently capture and utilize the hierarchical nature of molecular structures, and lack mechanisms for effective interaction among multi-level features. To address these limitations, we propose a Hierarchical Interaction Message Passing Mechanism, which serves as the foundation of our novel model, HimNet. Our method enables interaction-aware representation learning across atomic, motif, and molecular levels via hierarchical attention-guided message passing. This design allows HimNet to effectively balance global and local information, ensuring rich and task-relevant feature extraction for downstream property prediction tasks, such as Blood-Brain Barrier Permeability (BBBP). Extensive experiments on multiple benchmark datasets demonstrate that HimNet achieves the best or near-best performance in most molecular property prediction tasks. Furthermore, our method exhibits promising hierarchical interpretability, aligning well with chemical intuition on representative molecules. We believe that HimNet offers an accurate and efficient solution for molecular activity and ADMET property prediction, contributing significantly to advanced decision-making in the early stages of drug discovery.
Abstract:Developing lifelong learning agents is crucial for artificial general intelligence. However, deep reinforcement learning (RL) systems often suffer from plasticity loss, where neural networks gradually lose their ability to adapt during training. Despite its significance, this field lacks unified benchmarks and evaluation protocols. We introduce Plasticine, the first open-source framework for benchmarking plasticity optimization in deep RL. Plasticine provides single-file implementations of over 13 mitigation methods, 10 evaluation metrics, and learning scenarios with increasing non-stationarity levels from standard to open-ended environments. This framework enables researchers to systematically quantify plasticity loss, evaluate mitigation strategies, and analyze plasticity dynamics across different contexts. Our documentation, examples, and source code are available at https://github.com/RLE-Foundation/Plasticine.
Abstract:Source-Free Unsupervised Open-Set Domain Adaptation (SF-OSDA) methods using CLIP face significant issues: (1) while heavily dependent on domain-specific threshold selection, existing methods employ simple fixed thresholds, underutilizing CLIP's zero-shot potential in SF-OSDA scenarios; and (2) overlook intrinsic class tendencies while employing complex training to enforce feature separation, incurring deployment costs and feature shifts that compromise CLIP's generalization ability. To address these issues, we propose CLIPXpert, a novel SF-OSDA approach that integrates two key components: an adaptive thresholding strategy and an unknown class feature filtering module. Specifically, the Box-Cox GMM-Based Adaptive Thresholding (BGAT) module dynamically determines the optimal threshold by estimating sample score distributions, balancing known class recognition and unknown class sample detection. Additionally, the Singular Value Decomposition (SVD)-Based Unknown-Class Feature Filtering (SUFF) module reduces the tendency of unknown class samples towards known classes, improving the separation between known and unknown classes. Experiments show that our source-free and training-free method outperforms state-of-the-art trained approach UOTA by 1.92% on the DomainNet dataset, achieves SOTA-comparable performance on datasets such as Office-Home, and surpasses other SF-OSDA methods. This not only validates the effectiveness of our proposed method but also highlights CLIP's strong zero-shot potential for SF-OSDA tasks.
Abstract:Instruction-based Image Editing (IIE) models have made significantly improvement due to the progress of multimodal large language models (MLLMs) and diffusion models, which can understand and reason about complex editing instructions. In addition to advancing current IIE models, accurately evaluating their output has become increasingly critical and challenging. Current IIE evaluation methods and their evaluation procedures often fall short of aligning with human judgment and often lack explainability. To address these limitations, we propose JUdgement through Routing of Expertise (JURE). Each expert in JURE is a pre-selected model assumed to be equipped with an atomic expertise that can provide useful feedback to judge output, and the router dynamically routes the evaluation task of a given instruction and its output to appropriate experts, aggregating their feedback into a final judge. JURE is trustworthy in two aspects. First, it can effortlessly provide explanations about its judge by examining the routed experts and their feedback. Second, experimental results demonstrate that JURE is reliable by achieving superior alignment with human judgments, setting a new standard for automated IIE evaluation. Moreover, JURE's flexible design is future-proof - modular experts can be seamlessly replaced or expanded to accommodate advancements in IIE, maintaining consistently high evaluation quality. Our evaluation data and results are available at https://github.com/Cyyyyyrus/JURE.git.
Abstract:Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages. To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
Abstract:Gaussian Splatting (GS) has recently marked a significant advancement in 3D reconstruction, delivering both rapid rendering and high-quality results. However, existing 3DGS methods pose challenges in understanding underlying 3D semantics, which hinders model controllability and interpretability. To address it, we propose an interpretable single-view 3DGS framework, termed 3DisGS, to discover both coarse- and fine-grained 3D semantics via hierarchical disentangled representation learning (DRL). Specifically, the model employs a dual-branch architecture, consisting of a point cloud initialization branch and a triplane-Gaussian generation branch, to achieve coarse-grained disentanglement by separating 3D geometry and visual appearance features. Subsequently, fine-grained semantic representations within each modality are further discovered through DRL-based encoder-adapters. To our knowledge, this is the first work to achieve unsupervised interpretable 3DGS. Evaluations indicate that our model achieves 3D disentanglement while preserving high-quality and rapid reconstruction.
Abstract:Pursuing efficient text shape representations helps scene text detection models focus on compact foreground regions and optimize the contour reconstruction steps to simplify the whole detection pipeline. Current approaches either represent irregular shapes via box-to-polygon strategy or decomposing a contour into pieces for fitting gradually, the deficiency of coarse contours or complex pipelines always exists in these models. Considering the above issues, we introduce EdgeText to fit text contours compactly while alleviating excessive contour rebuilding processes. Concretely, it is observed that the two long edges of texts can be regarded as smooth curves. It allows us to build contours via continuous and smooth edges that cover text regions tightly instead of fitting piecewise, which helps avoid the two limitations in current models. Inspired by this observation, EdgeText formulates the text representation as the edge approximation problem via parameterized curve fitting functions. In the inference stage, our model starts with locating text centers, and then creating curve functions for approximating text edges relying on the points. Meanwhile, truncation points are determined based on the location features. In the end, extracting curve segments from curve functions by using the pixel coordinate information brought by truncation points to reconstruct text contours. Furthermore, considering the deep dependency of EdgeText on text edges, a bilateral enhanced perception (BEP) module is designed. It encourages our model to pay attention to the recognition of edge features. Additionally, to accelerate the learning of the curve function parameters, we introduce a proportional integral loss (PI-loss) to force the proposed model to focus on the curve distribution and avoid being disturbed by text scales.